Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5.
نویسندگان
چکیده
Late-onset retinal macular degeneration (L-ORMD) is an autosomal dominant condition resembling age-related macular degeneration (AMD) in which a key pathological feature is a thick extracellular sub-retinal pigment epithelial (RPE) deposit. L-ORMD is caused by mutation in the C1QTNF5 (CTRP5) short-chain collagen gene, but the disease mechanism is unknown. Here, we first show that wild-type C1QTNF5 is secreted, whereas mutant C1QTNF5 is misfolded and retained within the endoplasmic reticulum (ER). Secondly, the ER retained mutant protein has a shorter half-life than wild-type C1QTNF5 and is preferentially degraded by proteasomes. Thirdly, C1QTNF5 is shown to interact with the membrane-type frizzled related protein (MFRP), on the basis of yeast two-hybrid, protein pull-down and co-immunoprecipitation assays and RPE co-localization. These data suggest that L-ORMD is due to insufficient levels of secreted C1QTNF5, compromised RPE cell function resulting from ER retention of the mutant protein or both mechanisms.
منابع مشابه
Crystal structure of the globular domain of C1QTNF5: Implications for late-onset retinal macular degeneration.
Autosomal dominant late-onset retinal macular degeneration (L-ORMD) is caused by a single S163R mutation in the C1q and tumor necrosis factor-related protein 5 (C1QTNF5) gene. The C1QTNF5 gene encodes a secreted and membrane-associated protein involved in adhesion of retinal pigmented epithelial cells (RPE) to Bruch's membrane. The crystal structure of the trimeric globular domain of human C1QT...
متن کاملA CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.
Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long a...
متن کاملCharacterisation of a C1qtnf5 Ser163Arg Knock-In Mouse Model of Late-Onset Retinal Macular Degeneration
A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by...
متن کاملThe macular degeneration-linked C1QTNF5 (S163) mutation causes higher-order structural rearrangements.
The C1q-tumor necrosis factor 5 (C1QTNF5) protein plays a significant role in retinal pigmented epithelium (RPE) cellular adhesion. The C1QTNF5 gene is co-transcribed with the frizzled-related protein (MFRP) gene. A Ser-to-Arg mutation at site 163 (S163R) in C1QTNF5 is known to cause late-onset retinal macular degeneration (L-ORMD). Here we also found that C1QTNF5 monomers can multimerize into ...
متن کاملLongitudinal Structural Changes in Late-onset Retinal Degeneration.
PURPOSE To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. METHODS Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2006